Publications

Biological Degraders for Cell Surface Engineering

Zhang, D., Duque-Jimenez, J., Facchinetti, F., Brixi, G., Rhee, K., Jänne, P., Zhou, X.‡, Transferrin Receptor Targeting Chimeras for Membrane Protein Degradation, Nature, Epub ahead of print, 2024.

TransTACs are bifunctional antibodies that repurpose the rapidly and constitutively internalizing receptor TfR1 (blue) into a modular protein degradation mechanism of membrane proteins (yellow).

Rhee, K., Zhou X.‡, Two in one, the emerging concept of bifunctional antibodies, Current Opinion in Biotechnology, 85:103050, 2024.

Bifunctional antibodies are emerging as promising new drug modalities to address previously unmet needs in antibody therapeutics. This review article summarizes and discusses the potential of bifunctional antibodies to tackle diverse biomedical challenges.

Zhou, X.*, Kong, S.*, Maker, A., Remesh, S., Leung, K., Verba, K., Wells, J.‡, Antibody discovery identifies regulatory mechanisms of protein arginine deiminase 4”, Nature Chemical Biology, 20, 742–750, 2024.

Jiang, Z., Kuo, Y., Zhong, M., Zhang, J., Zhou, X., Xing, L., Wells, J., Wang, Y., Arkin, M.‡, Adaptor-Specific Antibody Fragment Inhibitors for the Intracellular Modulation of p97 (VCP) Protein-Protein Interactions. J Am Chem Soc. 144(29):13218-13225, 2022.

Zhou, X., Bracken, C., Zhang, K., Zhou, J., Mou, Y., Wang, L., Cheng, Y., Leung, K., Wells, J.‡, Targeting phosphotyrosine in native proteins with conditional, bi-specific antibody traps. J. Am. Chem. Soc. 142(41), 17703-17713, 2020.

Mou, Y., Zhou, X., Leung, K., Martinko, A., Yu, J., Chen, W., Mayo, S., Wang, L., Wells, J.‡, Engineering Improved Antiphosphotyrosine Antibodies Based on an Immunoconvergent Binding Motif. J. Am. Chem. Soc. 140(48):16615–16624, 2018.

Bracken, C., Lim, S., Solomon, P., Rettko, N., Nguyen, D., Zha, B., Schaefer, K., Byrnes, J., Zhou, J., Lui, I., Liu, J., Pance, K., QCRG Structural Biology Consortium, Zhou, X., Leung, K., Wells, J.‡, Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Nature Chemical Biology, 17: 113-121, 2021.

Lim, S.Gramespacher, J., Pance, K.*, Solomon, P., Jin, J., Rettko, N., Lui, I., Elledge, S., Liu, J., Bracken, C., Simmons, G., Zhou, X., Leung, K., Wells, J.‡, Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2. mAbs, 13(1): 1893426, 2021.

Glasgow, A., Glasgow, J., Limonta, D., Solomon, P., Lui, I., Zhang, Y., Nix, M., Rettko, N., Zha, B., Yamin, R., Kao, K., Rosenberg, O., Ravetch, J., Wiita, A., Leung, K., Lim, S., Zhou, X., Hobman, T., Kortemme, T., Wells, J.‡, Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. PNAS, 117 (45): 28046-28055, 2020.

Cell Signaling Engineering and Optogenetics

Ju, J., Lee, H., Ning, L., Ryu, H., Zhou, X., Chun, H., Lee, Y., Lee-Richerson, A., Jeong, C., Lin, M., Seong, J.‡, Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude. Cell Rep. 40(2):111080, 2022.

Zhou, X., Zou, X., Chung, H., Gao, Y., Liu, Y., Qi, L., Lin, M.‡, A single-chain photoswitchable Cas9 architecture for inducible gene editing and transcription. ACS Chemical Biology, Special Issue on the Chemical Biology of CRISPR, 13(2): 443–448, 2018.

Zhou, X., Fan, L., Li, P., Shen, K., Lin, M.‡, Optical Control of Cell Signaling by Single-chain Photoswitchable Kinases. Science, 355: 836 – 842, 2017.

Zhou, X., Pan, M., Lin, M.‡, Investigating neuronal function with optically controllable proteins. Frontiers in Molecular Neuroscience, 8: 37, 2015.

Zhou, X., Lin, M.‡, Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr. Opin. Chem. Biol. 17: 682 – 690, 2013.

Zhou, X., Chung, H., Lam, A., Lin, M.‡, Optical control of protein activity by fluorescent protein domains. Science, 338: 810 – 814, 2012.

Biosensor Designs

Elledge, S., Eigl, I., Phelps, M., McClinton, K., Zhou, X., Leung, K., Tata, C., Wells, J.‡, Using split luminescent biosensors for SARS-CoV-2 antibody detection in serum, plasma, and blood samples. Curr Protoc, 2(10): e521, 2022.

Elledge, S.*, Zhou, X.*, Byrnes, J., Martinko, A., Lui, I., Pance, K., Lim, S., Glasgow, J., Glasgow, A., Turcios, K., Iyer, N., Torres, L., Peluso, M., Henrich, T., Wang, T., Tato, C., Leung, K., Greenhouse, B., Wells, J.‡, Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nature Biotechnology 39: 928–935, 2021.

Peluso, M., Takahashi, S., Hakim, J., Kelly, J., Torres, L., Iyer, N., Turcios, K., Janson, O., Munter, S., Thanh, C., Nixon, C., Hoh, R., Tai, V., Fehrman, E., Hernandez, Y., Spinelli, M., Gandhi, M., Palafox, M., Vallari, A., Rodgers, M., Prostko, J., Hackett, J., Trinh, L., Wrin, T., Petroplolous, C., Chiu, C., Norris, P., DiGermanio, C., Stone, M., Busch, M., Elledge, S.Zhou, X., Wells, J., Shu, A., Kurtz, T., Pak, J., Wu, W., Burbelo, P., Cohen, J., Rutishauser, R., Martin, J., Deeks, S., Henrich, T., Rodriguez-Barraquer, I., Greenhouse, B.‡, SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay. Science Advances, 7(31): eabh3409, 2021.

Byrnes, J., Zhou, X., Lui, I., Elledge, S., Glasgow, J., Lim, S., Loudermilk, R., Chiu, C., Wang, T., Wilson, M., Leung, K., Wells, J.‡, A competitive SARS-CoV-2 serological assay reveals a majority of patient antibodies targeting the spike receptor binding domain compete for ACE2 binding. mSphere, 5(5): e00802-20, 2020.

Zamecnik, C., Rajan, J., Yamauchi, K., Mann, S., Loudermilk, R., Sowa, G., Zorn, K., Alvarenga, B., Gaebler, C., Caskey, M., Stone, M., Norris, P., Gu, W., Chiu, C., Ng, D., Byrnes, J., Zhou, X., Wells, J., Robbiani, DF., Nussenzweig, M., DeRisi, J., Wilson, M.‡, ReScan, a Multiplex Diagnostic Pipeline, Pans Human Sera for SARS-CoV-2 Antigens. Cell Rep. Med. 1(7):100123, 2020.

A complete list of publications:

https://www.ncbi.nlm.nih.gov/myncbi/xin.zhou.8/bibliography/public/

*Co-first author; ‡Corresponding author; Bolded: Present or former members of the Zhou Lab.